
AI-Driven HRV and RHR for Optimized Training

veral studies have highlighted deficits and biomechanical perturbations in the lower limb after anterior cruciate ligament
reconstruction (ACLR) . Such deficits persist during activities (walking and running) even a year after surgery, despite com-
pletion of return to play. (1–3) Return to running decision making is an important element in return to sport continuum.
This decision is based on clinical criteria including strength assessment. However, only two muscles are assessed: quadriceps
and hamstrings; while triceps surae also plays a main role in running biomechanics. (4) Return to running decision making is
an important element in return to sport continuum. This decision is based on clinical criteria including strength assessment.
However, only two muscles are assessed: quadriceps and hamstrings; while triceps surae also plays a main role in running
biomechanics. (4)Return to running decision making is an important element in return to sport continuum. This decision is
based on clinical criteria including strength assessment. However, only two muscles are assessed: quadriceps and hamstrings;
while triceps surae also plays a main role in running biomechanics. (4)Return to running decision making is an important
element in return to sport continuum. This decision is based on clinical criteria including strength assessment. However,
only two muscles are assessed: quadriceps and hamstrings; while triceps surae also plays a main role in running biomechanics.
(4)Return to running decision making is an important element in return to sport continuum. This decision is based on clinical
criteria including strength assessment. However, only two muscles are assessed: quadriceps and hamstrings; while triceps surae
also plays a main role in running biomechanics. (4)

Sports Science 3.0 Series
veral studies have highlighted deficits and biomechanical perturbations in the lower limb after anterior cruciate ligament recon-
struction (ACLR) . Such deficits persist during activities (walking and running) even a year after surgery, despite completion
of return to play. (1–3)

sportperfsci.com 1 SPSR - 2024 | November | 241 | v1



AI-Driven HRV and RHR for Optimized Training

AI-Assisted HRV Monitoring: Enhancing Training
Load Response and Decision-Making
Andrea Zignoli 1 Daniel J. Plews, 2 3 Paul B. Laursen, 1 2 4 5 Martin Buchheit 1 4 6 7 8 9

1Athletica, Revelstoke, Canada
2Sports Performance Research Institute New Zealand (SPRINZ), AUT University, Auckland, New Zealand
3Endure IQ, Auckland, New Zealand
4HIIT Science, Revelstoke, Canada
5Sports Performance and Athlete Development Environments (SPADE), University of Agder, Kristiansand, Norway
6Type 3.2 Performance
7INSEP, Paris, France
8Optimo Performance Center, Estepona, Spain
9Aspetar, Doha, Qatar

Sports Science 3.0 | Artificial intelligence (AI) | Response-guided training | Athlete performance | Athlete
readiness | Training load management | Evidence-informed practices

Headline

Sports Science 3.0 represents a pivotal shift in how technol-
ogy and artificial intelligence (AI) are applied to training

and performance. While Sports Science 1.0 focused on estab-
lishing fundamental principles, and Sports Science 2.0 utilized
technology for monitoring, these advancements often lacked
sufficient contextual grounding. Sports Science 3.0 bridges this
gap by integrating cutting-edge AI with foundational sports
science knowledge, creating a holistic approach to optimizing
athlete performance (Buchheit & Laursen, 2024).

Aim
The aim of this paper is to explore the practical application of
heart rate variability (HRV) and resting heart rate (RHR) in
response-guided training. By leveraging AI within the Sports
Science 3.0 framework, we seek to enhance the utility of these
metrics in everyday practice, making them more accessible and
actionable for athletes and coaches.

Integrating AI and Foundational Knowledge in Sports
Science
This paper responds to the call made in the Sports Science 3.0
framework by seeking to bridge the gap between foundational
knowledge and advanced technology. Specifically, it focuses on
heart rate variability (HRV) and resting heart rate (RHR) as
tools for deepening our understanding of athletes’ responses to
training load. By offering a structured interpretation and ap-
plication of these metrics, we aim to make response-informed
training more accessible and actionable, aligning with Sports
Science 3.0’s principles.

In athletic training, the process is relatively straightforward:
a stimulus (training load) is applied, and a response (train-
ing load response) is monitored. While the training load is
generally well-planned and understood, the challenge lies in
accurately assessing and leveraging an individual’s unique re-
sponse to that stimulus (Laursen & Buchheit, 2018). Training
is not one-size-fits-all; athletes exhibit significant variability in
their responses due to factors like physical abilities, genetics,
lifestyle, and mental state (Figure 1). Although the stimu-
lus side is well-controlled, the response side often remains un-
derutilized. Maximizing an athlete’s potential requires better
insight into and application of their individualized responses
(Buchheit, 2014).

HRV and RHR have emerged as valuable metrics for mon-
itoring training load responses (Task Force of the European
Society of Cardiology and the North American Society of Pac-
ing and Electrophysiology, 1996). These day-to-day varia-
tions provide a practical, non-invasive, and cost-effective win-
dow into the autonomic nervous system’s (ANS) response to

training-induced stress (Plews et al., 2012). This HRV-guided
approach allows for dynamic adjustments to training loads
based on an athlete’s physiological state, helping to optimize
performance outcomes (Kiviniemi et al., 2004; 2007).

Resting, exercise, and recovery heart rates are increasingly
recognized as tools for assessing fatigue, fitness, and endurance
performance. Their practical significance lies in their ability
to inform daily adjustments to training loads during specific
blocks and competitive seasons (Plews et al., 2013a). How-
ever, widespread adoption of HRV and RHR in practice re-
mains limited. To be effective, these metrics must be inter-
preted within the right context, accounting for measurement
error, the smallest meaningful changes, and the specifics of the
training phase, load, and intensity distribution. The choice to
use these measures should be based on the athlete’s needs, the
metric’s sensitivity to training status, and practical consider-
ations of measurement (Buchheit, 2014).

It’s also important to recognize that heart rate metrics alone
cannot capture the full spectrum of an athlete’s wellness, fa-
tigue, and performance. A comprehensive monitoring sys-
tem should combine these physiological measures with train-
ing logs, psychometric assessments, and non-invasive perfor-
mance tests. This multi-dimensional approach offers a holis-
tic view of an athlete’s training status, particularly in aer-
obic sports (Plews et al., 2013a; Buchheit, 2014). Recent
advancements in web and AI technologies enable the seam-
less integration of multiple data sources, cloud storage, and
computational power. These complex systems, hidden behind
user-friendly interfaces, allow for training platforms that im-
plement Sports Science 3.0 principles. By utilizing actionable
AI, these platforms make response-informed training more ac-
cessible to coaches and athletes, representing a significant leap
forward in sports science (Buchheit & Laursen, 2024).

In this paper, we present a framework for an HRV-driven
training platform designed to optimize training load through
contextual data. By improving the practical utility of HRV
and RHR, we aim to make response-informed training more
relevant to everyday practice for both athletes and coaches.
Additionally, we explore the evolving role of AI-driven tools,
such as Retrieval-Augmented Generation (RAG-AI) models,
and their place alongside human expertise in exercise phys-
iology and coaching. While AI can handle vast amounts of
data and provide textbook-like answers to structured ques-
tions, it may lack the deeper, experience-based insights that
human experts bring. This is especially relevant in contexts
where emotional intelligence, broad thinking, and experience
are vital. As AI systems become increasingly capable, the

sportperfsci.com 2 SPSR - 2024 | November | 241 | v1



AI-Driven HRV and RHR for Optimized Training

skills needed by educators and coaches in the Sports Science
3.0 era will likely emphasize critical thinking, decision-making,

and the personal aspects of coaching, where human expertise
remains invaluable. side lower RHR may indicate a state of
stability in practical side lower RHR may

Fig. 1. Individual variability in responses to identical training load progression. *Images designed by Freepik.

Methods
HRV Profile
The Heart Rate Variability (HRV) profile, specifically using
the Root Mean Square of Successive Differences (RMSSD),
serves as a cornerstone metric in HRV-guided training (Task
Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996).
RMSSD quantifies the variation in time between consecutive
heartbeats, providing a numerical representation of HRV. This
metric is particularly significant as it reflects the activity of the
autonomic nervous system (ANS), particularly the parasym-
pathetic branch. The parasympathetic system, responsible for
"rest and digest" functions, plays a critical role in recovery and
relaxation, making RMSSD a valuable indicator of an athlete’s
recovery status and overall physiological readiness.

To measure HRV, RMSSD values are captured using wear-
able technology that records heart rate data continuously
or during specific resting periods. These devices offer non-
invasive, user-friendly methods for daily monitoring. The
recorded RMSSD values are analyzed over time to identify
trends and deviations. Higher RMSSD values generally indi-
cate robust parasympathetic activity, suggesting the athlete
is relaxed and well-prepared for recovery from physical and
mental stressors. Conversely, lower RMSSD values may sug-
gest reduced parasympathetic activity, indicating heightened
stress or fatigue. While these interpretations are general, var-
ious subtleties in HRV data interpretation (e.g., saturation
phenomenon) must still be considered (Plews et al., 2017).
Tracking changes in RMSSD over time provides a nuanced un-
derstanding of the athlete’s recovery status and guides training
load adjustments accordingly. side lower RHR may indicate a
state of stability in practical side lower RHR may indicate a

RHR Profile
Resting Heart Rate (RHR) is another critical metric used to
assess an athlete’s cardiovascular health and fitness. Reported
in beats per minute (bpm), RHR provides a baseline indicator
of how efficiently the heart functions at rest. The RHR pro-
file is particularly useful when used alongside HRV, as it helps
contextualize the body’s response to training and stress (Plews
et al., 2017). RHR and HRV can also be assessed together to
detect the saturation phenomenon, where lower HRV along-
side lower RHR may indicate a state of stability in practical

side lower RHR may indicate a state of stability in practical
side lower RHR may indicate a state of stability in the body’s
response to stress. In contrast, a lower HRV combined with an
increased RHR is often a sign of insufficient recovery or height-
ened physiological stress. This method is enhanced when using
the HRV with the rMSSD:RR ratio, providing more practi-
cal insights for monitoring training responses (Plews et al.,
2013a).

RHR is measured under standardized conditions, typically
first thing in the morning before any physical activity. For elite
athletes, or those with very low RHR, measuring while sitting
up rather than supine can reduce the risk of HRV saturation,
ensuring that HRV data remains responsive and interpretable
(Michael et al., 2017). The data is then plotted over time
to establish a reference value and detect deviations from this
baseline. Increases in RHR can signal potential issues such as
overtraining or insufficient recovery, while decreases following
rest periods indicate improved cardiovascular efficiency and
readiness for further training. As with HRV, these interpreta-
tions are general, and a more nuanced assessment, considering
context, is essential (Buchheit, 2014).

Interpreting Data: Reference Value, Current Value,
and Normal Range
Establishing a reference value and normal range is essential
for the meaningful interpretation of HRV and RHR data. The
reference value serves as an anchor point, offering a baseline
for comparison with current values, while the normal range
helps assess whether current values deviate significantly from
what is typical for the individual. The reference value is de-
termined by calculating the 60-day rolling average (albeit our
experience suggests that 3 weeks of data are sufficient for a
solid start) of RHR or HRV data, providing a robust estimate
of the athlete’s baseline physiological state. The normal range
is derived from the coefficient of variation (CV) of the 60-day
period, typically using a fraction of the CV (e.g., 0.5 x 60-day
rolling CV) to define the acceptable range of variability. This
approach accounts for natural day-to-day fluctuations and re-
duces the influence of outliers or measurement errors.

To ensure accuracy, the current value is computed as the
rolling 7-day average, rather than relying on a single daily
measurement. This method smooths out short-term variabil-
ity and provides a more reliable indication of the athlete’s
physiological state (Plews et al., 2013b). side lower RHR may
indicate a state of stability in practical side lower RHR may
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Fig. 2. Training load progression and Root Mean Square of Successive Differences (RMSSD) heart rate variability
(HRV) responses. Daily measurements (white circles), 7-day current values (thin black line), 60-day baseline (dashed
thick black line), and normal range (shaded gray area) are shown in a representative athlete.

Implementation: Teaching an AI About HRV
The question of whether an AI can truly "know" something
about exercise physiology invites deep discussions about the
nature of knowledge, expertise, and the current limitations of
AI technology. While we cannot explore these intricate de-
bates in this manuscript, we can introduce methodologies for
building an AI capable of providing useful and insightful an-
swers to highly structured questions within a specific domain
of knowledge.

Large language models (LLMs) are used to generate struc-
tured knowledge spaces where concepts are interconnected.
Broadly speaking, an LLM identifies relationships between
concepts based on statistical patterns in the data, enabling
it to construct representations of the world from text descrip-
tions. Numerous LLMs are readily available and have been
widely employed in chatbots and web/mobile applications,
transforming human-machine interaction. However, as LLMs
become more broadly adopted, they tend to lack deep domain-
specific knowledge. This limitation has led to the emergence
of RAG as a promising tool for creating AI solutions tailored
to specific domains and contexts.

In this manuscript, we introduce a RAG workflow for gen-
erating and exploring knowledge graphs based on scientific
articles related to HRV. This workflow follows the methodol-
ogy presented in Buehler (2024), with queries adapted for this
specific use case. For the purpose of building this RAG-AI
and for display, we used only one scientific paper: Plews, D.
J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M.
(2013). Training adaptation and heart rate variability in elite
endurance athletes: Opening the door to effective monitoring.
Sports Medicine, 43, 773-781. By intentionally focusing on a
single paper, we ensured the resulting knowledge graph would
remain concise and easily queryable.

Process Overview
1. Text Processing:
a. We start by selecting PDF files arbitrarily and converting

them into plain text.
b. The text is split into smaller chunks to make it digestible

by a large language model (LLM).

The text is split into smaller chunks to make it digestible by
2. Querying the LLM:
Using the LangChain Python package, we link a query tem-
plate to the selected LLM. The following queries are executed:

a. First Query: We use the LLM (mistral-large-latest
model) to generate a summary of each text chunk.

b. Second Query: From the summary, the same LLM gen-
erates a list of bullet points.

c. Third Query: The LLM then creates a title based on the
summary.

d. Fourth Query: Using a different model (llama3-70b-
8192), the LLM generates a list of triplets—two concepts
(nodes) connected by an edge that represents a relation-
ship.

3. Building the Knowledge Graph:
a. The triplets are used to construct a knowledge graph, which

allows for visual navigation of the connections between con-
cepts.

b. We use the BAAI/bge-large-en-v1.5 model to generate em-
beddings from the titles and summaries. This allows for
quick navigation through the graph when specific informa-
tion needs to be retrieved.

c. These embeddings are saved in a Redis vector database.

4. Query Pipeline:
a. All components are connected into a LangChain pipeline,

allowing for queries to be received from either software or
a user.

b. The LLM (tested with the llama3-70b-8192 model) inter-
prets the query and retrieves the relevant context from the
knowledge graph.

c. The context and query are then sent to another LLM, which
is restricted to answering based solely on the information
within the provided context.

The following table lists the triplets generated, which should
be read as: Node 1 -> Edge -> Node 2.
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Table 1. Sample or the list of triplets generated from the scientific article: Plews, D. J., Laursen, P. B., Stanley,
J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance
athletes: opening the door to effective monitoring. Sports medicine, 43, 773-781.

Node 1 Edge Node 2
Heart rate variability (HRV) is used to monitor Training adaptation
Increases in HRV signify Positive adaptations
Decreases in HRV indicate Negative adaptations
Elite athletes show Inconsistent HRV responses
Methodological issues exist in Challenges in using HRV

Appropriate averaging techniques are Solutions to
methodological issues

. . . . . . . . .

The concepts can be represented in a chord diagram, allowing
them to be visualized, explored, and verified. This translation
into natural language is crucial for human experts to assess

the validity of the knowledge graph. By applying their exper-
tise, they can either endorse or revise these knowledge graphs
as necessary. The text is split into smaller chunks to make it
digestible by a large language model

Fig. 3. Chord diagram highlighting the connections between concepts, taken from the triplets generated from the
scientific paper: Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation
and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports medicine, 43,
773-781.
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Implementation: Automatically Adjusting Future
Training Loads
The system detailed in Figure 4 assists coaches, athletes, and
the RAG-AI in making informed decisions about training in-
tensity, rest, and recovery, thereby promoting health and re-
ducing the risk of injury. The framework operates similarly
to an automatic control feedback loop. According to feed-
back control principles, a target performance improvement or
maintenance is driven by the input—namely, the training load.
The athlete’s response to this prescribed load is evaluated us-
ing both internal variables (such as heart rate, RPE, or self-
reported feelings) and external load variables (such as power
output or speed) during and after the training session.

A first, internal feedback loop can be implemented to make
adjustments for future sessions if the athlete’s response de-

viates from expectations. A second, external feedback loop
evaluates recovery metrics such as HRV and RHR. Based on
these assessments and the principles discussed earlier, future
training loads can be adjusted as needed.

One of the greatest challenges to the proper functioning of a
feedback loop is the presence of "noise" in the process. Mon-
itoring tools may have limitations and may not capture all
the stress factors affecting an athlete. For instance, if training
load is not the primary stressor in an athlete’s life, HRV and
RHR values might be misleading. Additionally, self-reported
metrics like RPE and feelings can be difficult for an AI to in-
terpret correctly, as it may struggle to understand the nuances
or hidden messages within the feedback.

Fig. 4. Schematic Representation of an HRV-Guided Training Plan Generator
This flowchart illustrates the process of generating a training plan, where lines and arrows represent the flow of in-
formation. The core question the system addresses is: "What training should I do tomorrow?" To answer this, the
generator builds the training program based on supercompensation principles while factoring in constraints such as
time availability and total training volume. The plan is highly context-dependent (e.g., athlete’s locomotor profile).
Each day’s session acts as a stimulus, to which the athlete responds individually. The effect of the stimulus continues
throughout the day, culminating in recovery. After recovery, resting heart rate and heart rate variability oscillations,
along with the outcomes from the training session, are used to update the context and refine the training plan. The
next session is then generated, potentially including a rest day. *Images designed by Freepik.
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Interpreting Traffic Lights
To facilitate the practical application of HRV and RHR data, a
traffic light system can also be employed by comparing the cur-
rent value (rolling 7-day average) with the reference value and
normal range. The color-coded system suggested here provides
immediate, actionable insights into the athlete’s readiness and
recovery status:

• Optimal readiness: No signs of fatigue or non-
functional overtraining. The athlete is well-prepared for
upcoming training loads.

• Minimal concerns: The athlete is generally ready
but should monitor their condition closely to ensure con-
tinued readiness.

• Minor concerns: Signals the need for caution, with
possible early signs of fatigue. The athlete should be mind-
ful of their physical and mental state.

• Moderate concerns: Noticeable signs of stress or fat-
igue. Prioritize recovery to prevent performance decline or
injury.

• Significant concerns: Compromised readiness.
High-intensity training may not be advisable; rest or lighter
training should be considered.

• High concerns: Readiness is seriously compromised.
Intense training could be counterproductive. Rest is
strongly recommended.

• Very-high concerns: Critical need for rest. Contin-
uing intense training poses significant risks. Prioritize re-
covery to prevent injury or illness.

Discussion
Considerations on the Choice of the Baseline and the
Narrow Range
From a computational standpoint, accurate interpretation of
HRV and RHR data requires meticulous statistical analysis.
When using a rolling 60-day window to compute the reference
value, this same window is typically used to calculate the nor-
mal range. However, verifying the normality of the data distri-
bution within this period is seldom discussed in the literature.
The most common practice is to use the average to represent
the central value. Additionally, since consecutive points in
the RHR and HRV time series are often correlated, autocor-
relation must be considered. Performing an autocorrelation
analysis ensures that this correlation does not skew the out-
come statistics, though this practice is not often emphasized.
A robust alternative to the average is the use of the 60-day
rolling median, paired with the interquartile range (Q1–Q3).
This approach can reduce the influence of non-normality and
outliers, offering a more reliable measure of central tendency
and variability.

The definition of the normal range requires further clari-
fication. We propose using 0.5 times the 60-day rolling co-
efficient of variation to calculate this range, as it provides a
useful reference for comparing current values with historical
data. An alternative approach is to use 0.2 times the 60-day
rolling standard deviation, which is based on Cohen’s effect
size d, where a value of 0.2 indicates a "small" effect size
(Sawilowsky, 2009). It is widely recognized that descriptors
like Cohen’s d are "rules of thumb," introducing a degree of
subjectivity in determining what constitutes a "meaningful"
deviation. In the context of magnitude-based inference (Hop-
kins et al., 2009), the smallest worthwhile change (SWC) is
often defined as the smallest difference that would result in a
Cohen’s d of 0.2. However, defining a meaningful difference is
inherently subjective, as both intra- and inter-individual vari-

ability can influence this decision. For this paper, we chose to
define the normal range as 0.5 times the 60-day rolling CV.

AI and Human Domain-Specific Knowledge
AI has the ability to process vast amounts of information in
a structured manner, quickly retrieving and synthesizing re-
sponses by combining pre-trained knowledge (from its model)
with retrieved documents (in the case of RAG). In exercise
physiology, it can be adapted to answer a wide range of queries,
such as explaining how HRV relates to training load or recov-
ery metrics. While AI may not "know" in the human sense,
it can aggregate what it has learned from previous data and
augment this with specific, relevant information. Human ex-
perts, on the other hand, are often needed to evaluate whether
the outputs—such as Table 1 and Figure 2—are accurate and
useful. It is important to remember that this information is de-
rived from peer-reviewed sources, with concepts linked based
on statistical patterns and semantic proximity.

Unlike AI, human experts bring intuition, experience, and
a broader contextual understanding, allowing them to ad-
dress ambiguous, cross-disciplinary, or unstructured questions.
They can also draw on subjective experience, interpret real-
world results, and assess exceptions.

AI-RAG and human experts may provide similar or differ-
ent answers depending on the question. For example, when
asked, "What is heart rate variability (HRV), and how does it
relate to exercise recovery?" AI-RAG can provide a textbook-
style response based on available data.

HRV is the variation in time intervals between heart-
beats, which is influenced by the autonomic nervous
system. A high HRV is generally considered a sign of
good recovery and readiness for physical exertion,
while a lower HRV might indicate that the body is
under stress or hasn’t fully recovered from exercise.

Given such a well-structured question, a human expert
would likely provide a similar explanation. In this instance,
both the AI-RAG and the human expert would offer tech-
nically accurate and useful responses, and for someone with
basic knowledge, the difference might not be easily noticeable.

However, let’s consider a more complex example that an AI-
RAG might struggle to follow up on. We already know how
to compute meaningful oscillations in HRV, so we might ask:
"Given that my HRV dropped significantly from 56 to 48 out-
side of the normal range this week, but I feel fine, what should
I do about my training schedule?"

The AI-RAG answer might sound like:

A low HRV might indicate negative adaptations to
training or stress, so it’s advisable to take a rest
day or reduce intensity.

In the framework depicted in Figure 3, this might automat-
ically prompt a change in tomorrow’s session, perhaps leaving
the choice between rest or a low-intensity session to the athlete
or coach. However, it is difficult for the AI-RAG to truly assess
the specific individual, especially when faced with subjective
statements like "I feel fine." This is where human experts ex-
cel: they can recognize that low HRV may be due to factors
unrelated to training stress (e.g., sleep patterns or life stress),
or reasons that may not be apparent in the data. Human
experts can ask and interpret the right follow-up questions,
such as "How are you sleeping?" or "Are you feeling mentally
or emotionally stressed due to X factor?" They can contextu-
alize the data within the athlete’s unique circumstances and
provide a more tailored response. Most importantly, humans
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can quickly adapt their advice to unforeseen circumstances.
Here, human experts can integrate subjective feedback, real-
time data, and complex contextual knowledge to offer a nu-
anced, personalized response—something that even the most
advanced AI-RAG cannot fully achieve.

AI-RAG excels at factual retrieval and can generate impres-
sive responses from its knowledge base. Humans, on the other
hand, excel at interpretation, particularly when the context
is complex, ambiguous, or requires deeper, lived insight. The
optimal approach involves blending the strengths of AI-RAG
with human expertise to connect objective data with subjec-
tive, real-world considerations.

Prompting a Change in the Way We Teach?
AI systems like RAG-LLM, which are capable of delivering
textbook-level answers, encourage us to rethink how we ap-
proach education, particularly in fields where factual knowl-
edge has traditionally been the focus. For professionals, mem-
orizing facts may become increasingly less relevant. Instead,
students will need to emphasize critical thinking, problem-
solving, and contextual understanding—skills that cannot be
easily automated or retrieved. This shift in education should
prioritize teaching "how to think" and "how to apply what you
know" over "what to know." Encouraging students to develop
decision-making skills, especially in situations where there are
no easy answers, will be key.

A crucial skill for students will also be learning how to use
AI effectively, especially in fields like medicine, engineering, or
exercise physiology. Being able to critically assess and inter-
pret AI-generated outputs will become an essential capability.
While AI can offer vast amounts of knowledge, it lacks moral
reasoning, ethical considerations, and emotional intelligence.
These are areas where human experts will always be necessary,
particularly in disciplines like medicine, law, and education. In
this evolving landscape, education should focus on the ethical
use of AI, understanding its limitations, and recognizing the
importance of human oversight.

For example, instead of solely teaching students the facts
about how HRV relates to recovery, instructors could present
real-world case studies. Students would analyze HRV data
for a specific athlete, make training recommendations, and
then adjust those recommendations based on further data or
feedback. While AI might assist in finding relevant research
or identifying patterns, students would be responsible for in-
terpreting and applying that knowledge within a particular
context. Ultimately, AI-RAG and similar technologies should
be viewed as co-pilots, not replacements. Students and profes-
sionals who understand how to collaborate with AI—knowing
when and how to leverage it, and when human expertise is
indispensable—will thrive in the emerging landscape of Sports
Science 3.0.

Key Points
• HRV and RHR as Core Metrics: Heart rate variability

(HRV) and resting heart rate (RHR) offer valuable, non-
invasive tools for monitoring an athlete’s physiological re-
sponse to training and recovery.

• AI Integration in Sports Science 3.0: By integrat-
ing artificial intelligence (AI) with foundational sports sci-
ence principles, response-guided training can be enhanced,
providing personalized, actionable insights for athletes and
coaches.

• Rolling Averages for Reliable Insights: The use of
a 60-day reference value and a 7-day rolling average helps
smooth out short-term variability, providing a more reliable
assessment of an athlete’s readiness and recovery status.

• Traffic Light System for Practical Application: A
color-coded traffic light system offers immediate feedback
on training readiness, enabling informed decisions about
training intensity and recovery, optimizing performance
while reducing injury risk.

• RAG-AI Integration: RAG models are used to synthe-
size domain-specific knowledge from HRV literature, allow-
ing AI to assist coaches and athletes in interpreting data
and making adjustments to training plans.

• Human-AI Collaboration: While AI can efficiently pro-
cess and retrieve vast amounts of information, human ex-
pertise remains essential for contextualizing data, interpret-
ing subjective inputs, and making nuanced training deci-
sions.
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